Return Oriented Programming

CSCI 6621: Network Security
Week 11, Lecture 21: Tuesday, 04/04/2011

Daniel Bilar
University of New Orleans
Department of Computer Science
Spring 2011

Goals today

* Review: Buffer overflow, format string

* Return Oriented Programming
— Chain together sequences (‘gadgets’) ending in RET

— Can use good code chunks as ‘alphabet’, string
together to get for bad code

e Some similarities to an antigram (form of anagram)
Within earshot ¥ | won't hear this

— Build “gadgets” for load-store, arithmetic,
logic, control flow, system calls

— Attack can perform arbitrary computation
using no injected code at all

Some slides gratefully adapted from Shacham BH 08 presentation
(UCSD)

Review: Stack frame

* Area of the stack set aside for a ESP >
procedure's return address, saved
passed parameters, saved registers
registers, and local variables
— Also known as an activation record
* Created by the following steps local
1. Calling procedure pushes =
arguments on the stack and calls variables
the procedure. [EBP_4]
2. The subroutine is called, causing EBP >
the return address to be pushed ebp
on the stack.
3. The called procedure pushes EBP [EBP+4] ret addr
on the stack, and sets EBP to ESP.

4. If local variables are needed, a EBP+8
constant is subtracted from ESP []
to make room on the stack.

5. The registers needed to be saved
are pushed.

Review: Buffer Overflow
Causes and Cures

* Typical memory exploit involves bending pointer and code
injection
— Put malicious code at a predictable location in memory, usually
masquerading as data

— Trick vulnerable program into passing control to it
* Overwrite saved EIP, function callback pointer, etc.

* One idea: prevent execution of untrusted code

— Make stack and other data areas non-executable
e Can mess up useful functionality (eg: stack manipulation in
ActionScript)
— Digitally sign all code

* Traditional appraoch, but many ways to circumvent, forge signatures
etc

— Ensure that all control transfers are into a trusted, approved
code image

Review: WEX / DEP

* Mark all writeable memory locations as non-
executable
— Example: Microsoft’s DEP (Data Execution Prevention)
— This blocks all code injection exploits

 Hardware support
— AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)
— Makes memory page non-executable

 Widely deployed

— Windows (since XP SP2), Linux (via PaX patches),
OpenBSD, OS X (since 10.5)

What Does WX Not Prevent?

Can still corrupt stack ...

— ... or function pointers or critical data on the heap, but
that’s not important right now

As long as “saved EIP” points into existing code, WX
protection will not block control transfer
This is the basis of return-to-libc exploits

— Overwrite saved EIP with address of any (vital and almost
certainly linked-to library like libc routine)

— you arrange memory to look like arguments before hand
Does not look like a huge threat

— Attacker cannot execute arbitrary code
— ... especially if system() is not available

return-to-libc 2.0

* |dea

— Overwritten saved EIP need not point to the beginning
of a library routine

— Any existing instruction in the code image is fine
— Will execute the sequence starting from this instruction

 What if instruction sequence contains RET?

— Execution will be transferred .. to where? Read the
word pointed to by stack pointer (ESP)

e Guess what? Its value is under attacker’s control! (why?)

— Use it as the new value for EIP
* Now control is transferred to an address of attacker’s choice!

— Increment ESP to point to the next word on the stack

Mounting a ROP attack

e Remember: Fun starts with control of ONE pointer that is
and directs control flow

* So need control of memory around %esp .. How .. Couple of
options :
1. Rewrite stack

— Buffer overflow on stack (we are not executing the code, we are
just writing to the stack)

— Format string vuln to rewrite stack contents

2. Move stack:

— Overwrite saved frame pointer on stack; on leave/ret, move
%esp to area under attacker control

— Overflow function pointer to a register spring for %esp:
. set or modify %esp from an attacker-controlled register then return

Chaining RETs for Fun and Profit

[Shacham et al]

* Can chain together sequences ending in RET

— Krahmer, “x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique” (2005)

 What is this good for?

 Answer [Shacham et al.]: everything (‘

— Turing-complete language &,

— Build “gadgets” for load-store, arithmetic,
logic, control flow, system calls

— Attack can perform arbitrary computation
using no injected code at all!

Ordinary Programming

insn insn insn insn insn

instruction
pointer

* |nstruction pointer (EIP) determines which
instruction to fetch and execute

* Once processor has executed the instruction, it
automatically increments EIP to next instruction

* Control flow by changing value of EIP

Return-Oriented Programming

Insns ... ret insns ... ret

C library

insns ... ret

insns ... ret insns ... ret

/17 /]

stack
pointer

e Stack pointer (ESP) determines which instruction
sequence to fetch and execute

* Processor doesn’t automatically increment ESP
— But the RET at end of each instruction sequence does

11

No-0ps

nop nop nop / \
A A
instruction stack
pointer pointer

e Easy case, let’s do the same thing as a noop
* A noop instruction does nothing but advance EIP

Return-oriented equivalent is

— Point to return instruction
— Advances ESP

12

Immediate Constants

pop %eax;ret

mov $0xdeadbeef, “%eax | / l l
(bb ef be ad de) Oxdeadbeefl

Instruction stack
pointer pointer

* |nstructions can encode constants

Return-oriented equivalent
— Store on the stack
— Pop into register to use

jmp +4 |

instruction
pointer

Control Flow

pop %esp; ret

et

stack
pointer

7 Ordinary programming
(Conditionally) set EIP to new value

1 Return-oriented equivalent
(Conditionally) set ESP to new value

14

Gadgets: Multi-instruction Sequences

mov (%eax), %ebx; ret

pop %eax; ret

\ \ (word 1o
load)
A
stack

pointer

 Sometimes more than one instruction sequence
needed to encode logical unit

 Example: Want to load from memory into register

— Load address of source word into EAX
— Load memory at (EAX) into EBX

15

Gadget Design (2007)

Testbed: libc-2.3.5.s0, Fedora Core 4

Gadgets built from found code sequences:
— Load-store, arithmetic & logic, control flow, syscalls

Found code sequences are challenging to use
— Short; perform a small unit of work

— No standard function prologue/epilogue

— Haphazard interface

— Some convenient instructions not always available

Build actually translation compiler c code into
gadget in 2008 2009 .. Muuuch easier now

Conditional Jumps

cmp compares operands and sets a number of
flags in the EFLAGS register

— Luckily, many other ops set EFLAGS as a side effect
jcc jumps when flags satisfy certain conditions
— But this causes a change in EIP... not useful (why?)
Need conditional change in stack pointer (ESP)

Strategy on ROP:

— Move flags to general-purpose register
— Compute either delta (if flag is 1) or O (if flag is 0)
— Perturb ESP by the computed delta

Involved process! Let’s see how it is done ..

Phase 1: Perform Comparison

Yoesp

*™ neg %eax

ret

neg calculates two’s complement

— As a side effect, sets carry flag (CF) if
the argument is nonzero

Use this to test for equality

sub is similar, use to test if one
number is greater than another

18

Phase 2: Store 1-or-0 to Memory

™ movl %ecx, (%edx) 5
' | ret
® ade %cl. %cl §
ret

0x00000000

* nop %ecx U
pop %edx L
ret

[IClear ECX

JEDX points to destination

(CF goes here) [adc adds up its operands & the carry flag;

- result will be equal to the carry flag (why?)
[1Store result of adc into destination

%oesp

19

Phase 3: Compute Delta-or-Zero

}0x5e5bbccd =

espdelta

Oxdecafbad

Oxdecafbad

Y%oesp —»

(CF here)

OxbadcOded

= andl| oo(."Si, (°oco<)
rolb $0x5d, 0x5eSbbccd(%oebx)

ret

* pop Yecx
pop %eebx
ret

* pop %eesi
ret

* pop Yeebx
ret

* negl 94(%ebx)
pop Yeedi
pop %ebp
mov %esi, %esi
ret

Bitwise AND with delta
(in ESI)

Two’s-complement
negation:

O becomes 0...0:
1 becomes 1...1

20

Phase 4: Perturb ESP by Delta

oesp

(perturbation here)

* pop %eax
ret

* add| (%eax), %esp
addb %al, (%eax)
addb %cl, 0(%eax)
addb %al, (%eax)
ret

21

Finding Instruction Sequences

Any instruction sequence ending in RET is
useful

Algorithmic problem: recover all sequences of
valid instructions from libc that end in a RET
At each RET (C3 byte), look back:

— Are preceding i bytes a valid instruction?

— Recur from found instructions

Collect instruction sequences in a trie

“New” Parsing
Unintended instructions

Actual code from ecb_crypt()

movl $0x00000001, -44(%ebp) 01

add %dh, %bh

*
N
Nt

test $0x00000007, Y%edi
%9 % movl $0x0F000000, (%edi)

xchg %ebp, %eax
Inc %oebp
ret

setnzb -61(%ebp)

AN
o1
e e e N\

23

x86 Architecture Helps

Register-memory machine

— Plentiful opportunities for accessing memory
Register-starved

— Multiple sequences likely to operate on same register
Instructions are variable-length, unaligned

— More instruction sequences exist in libc

— Instruction types not issued by compiler may be
available

Unstructured call/ret ABI
— Any sequence ending in a return is useful

SPARC: the Un-x86

Load-store RISC machine

— Only a few special instructions access memory
Register-rich

— 128 registers; 32 available to any given function

All instructions 32 bits long; alignment enforced

— No unintended instructions

Highly structured calling convention
— Register windows
— Stack frames have specific format

ROP on SPARC

Testbed: Solaris 10 libc (1.3 MB)

Use instruction sequences that are suffixes of
real functions

Dataflow within a gadget

— Structured dataflow to dovetail with calling
convention

Dataflow between gadgets

— Each gadget is memory-memory

Turing-complete computation .. amazing

Summary

e Cat and mouse game
— Preventing execution of foreign code not enough

— Can use good code as ‘alphabet’, string together
to get bad code through RETs

e Some similarities to an antigram (form of anagram)
Within earshot 1 | won't hear this

— Can one use RET frequency to detect this?
e Son of a gun: Shacham (2010) showed you
cannot use this detection approach

— Many RET-like sequences: pop %eax; jmp %eax
* Indirect register jumps etc

For next Thursday

* Review notes, handouts

